Sains
Malaysiana 54(8)(2025): 2099-2112
http://doi.org/10.17576/jsm-2025-5408-18
A Comparative
Analysis of Stratified Double Folded Ranked Set Sampling Performance Across
Various Distributions
(Analisis Perbandingan Prestasi Persampelan
Set Berperingkat Berlipat Ganda Berstrata Melalui Pelbagai Taburan)
CHAINARONG
PEANPAILOON1 & NOPPAKUN THONGMUAL2,*
1Department
of Curriculum and Instruction (Mathematics), Faculty of Education,
Sakon
Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
2Faculty of
Sciences, Department of Science and Mathematics, Kalasin University, 46000,
Thailand
Received: 2 October
2024/Accepted: 25 June 2025
Abstract
Efficient statistical estimation is crucial for
accurate population parameter estimation. This study introduces and evaluates
Stratified Double Folded Ranked Set Sampling (SDFRSS), a modified sampling
technique designed to enhance estimation efficiency across various probability
distributions. Using Monte Carlo simulations, SDFRSS is compared with
Stratified Simple Random Sampling (SSRS), Stratified Ranked Set Sampling
(SRSS), and Stratified Median Ranked Set Sampling (SMRSS) based on Mean Squared
Error (MSE) and Relative Efficiency (RE) under multiple distributions,
including Normal, Student’s t, Uniform, Exponential, Geometric, Gamma, Beta, Weibull, Log-Normal, Logistic, and Chi-Square. The results showed that SDFRSS consistently
outperforms SSRS, SRSS and SMRSS, particularly in skewed and heavy-tailed
distributions, by achieving lower MSE and higher efficiency. It effectively
reduces estimation errors while maintaining robustness across different sample
sizes and stratification structures. However, for some symmetric distributions,
SDFRSS does not always yield the lowest MSE, emphasizing the need for
distribution-specific selection of sampling methods. Despite increased
computational complexity, SDFRSS provides significant gains in precision and
efficiency, making it a valuable tool for researchers in fields requiring
accurate statistical estimation. Future research should explore its application
in high-dimensional data and real-world statistical problems to further
establish its practical utility.
Keywords: Stratified Double Folded
Ranked Set Sampling; Stratified Median Ranked Set Sampling;
Stratified Ranked Set Sampling; Stratified Simple Random Sampling
Abstrak
Anggaran statistik yang cekap adalah penting
untuk anggaran parameter populasi yang tepat. Kajian ini memperkenal dan
menilai Persampelan Set Berperingkat Berlipat Ganda Berstrata (SDFRSS), teknik
persampelan terubah suai yang direka untuk meningkatkan kecekapan anggaran
merentas pelbagai taburan kebarangkalian. Menggunakan simulasi Monte Carlo,
SDFRSS dibandingkan dengan Persampelan Rawak Mudah Berstrata (SSRS),
Persampelan Set Peringkat Berstrata (SRSS) dan Persampelan Set Peringkat Median
Berstrata (SMRSS) berdasarkan Ralat Purata Kuasa Dua (MSE) dan Kecekapan
Relatif (RE) di bawah berbilang pengagihan, termasuk Normal, t Pelajar, Seragam,
Eksponen, Geometri, Gamma, Beta, Weibull, Log-Normal, Logistik dan Khi Kuasa Dua. Keputusan ini menunjukkan bahawa SDFRSS secara
tekal mengatasi prestasi SSRS, SRSS dan SMRSS, terutamanya dalam pengedaran
condong dan berat, dengan mencapai MSE yang lebih rendah dan kecekapan yang
lebih tinggi. Ia berkesan mengurangkan ralat anggaran sambil mengekalkan
keteguhan melalui saiz sampel yang berbeza dan struktur stratifikasi. Walau
bagaimanapun, untuk sesetengah taburan simetri, SDFRSS tidak selalu
menghasilkan MSE terendah, menekankan keperluan untuk pemilihan kaedah
pensampelan khusus pengedaran. Walaupun kerumitan pengiraan meningkat, SDFRSS
memberikan keputusan yang lebih baik dalam ketepatan dan kecekapan,
menjadikannya alatan penting untuk penyelidik dalam bidang yang memerlukan
anggaran statistik yang tepat. Penyelidikan masa depan harus meneroka pengaplikasiannya
dalam data berdimensi tinggi dan masalah statistik dunia nyata untuk terus
mewujudkan utiliti praktikalnya.
Kata kunci: Persampelan Set Kedudukan Berlipat Ganda
Berstrata; Persampelan Set Kedudukan Median Berstrata; Persampelan Set
Kedudukan Berstrata; Persampelan Rawak Mudah Berstrata
REFERENCES
Bani-Mustafa,
A., Al-Nasser, A.D. & Aslam, M. 2011. Folded ranked set sampling for
asymmetric distributions. Communications of the Korean Statistical
Society 18(1): 147-153. doi:10.5351/ckss.2011.18.1.147
Dell, T.R. & Clutter,
J.L. 1972. Ranked set sampling theory with order statistics background. Biometrics 28(3): 545-555.
McIntyre, G.A. 1952. A
method for unbiased selective sampling using ranked sets. Australian Journal
of Agricultural Research 3: 385-390.
Samawi, H.M. 1996.
Estimating the population mean using stratified ranked set sampling. Communications
in Statistics - Theory and Methods 25(3): 585-601.
Samawi, H.M., Al-Sagheer,
F.A. & Ahmed, M.S. 1996. Estimating the population mean using extreme
ranked set sampling. Journal of Applied Statistics 23(4): 417-426.
Takahasi, K. &
Wakimoto, K. 1968. On unbiased estimates of the population mean based on the
sample stratified by means of ordering. Ann. Inst. Stat. Math. 20:
1-31.
*Corresponding author;
email: nop_stat@hotmail.com